The Crystal Structure of $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathbf{B r}$, a New Superionic Conductor

By W. F. Kuhs, R. Nitsche and K. Scheunemann
Kristallographisches Institut der Universität Freiburg, Hebelstrasse 25, D-7800 Freiburg im Breisgau, Federal Republic of Germany

(Received 5 July 1977; accepted 8 August 1977)

Abstract

Crystals of $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$, grown by chemical vapour transport, are cubic, space group $F \overline{4} 3 m, a=9.728$ (1) $\dot{\mathrm{A}}$, $Z=4$. The intensities were measured on an Enraf-Nonius CAD-4 diffractometer. A Patterson synthesis revealed the basic structure. A least-squares refinement, taking into account anisotropic temperature factors, isotropic extinction and anomalous scattering, led to a final R of $0 \cdot 046$. The S and Br anions form a framework of interpenetrating, centred icosahedra (similar to the Laves phase MgCu_{2}), providing ideal and distorted tetrahedral cation sites. The P atoms are coordinated exactly tetrahedrally by four S atoms. The Cu atoms occur in three coordinations: distorted tetrahedral, trigonal planar and linear. The high ionic conductivity is explained by the jumping of Cu atoms between several, only partially occupied, lattice positions.

Introduction

In the course of an investigation of the system $\mathrm{Cu}-\mathrm{P}-\mathrm{S}$ we noted (apart from the known orthothiophosphate $\mathrm{Cu}_{3} \mathrm{PS}_{4}$) the formation of the new compound $\mathrm{Cu}_{7} \mathrm{PS}_{6} \quad$ (Kuhs, Schulte-Kellinghaus, Krämer \& Nitsche, 1977). Attempts to grow this material by halogen transport resulted in the formation of very stable, cubic copper phosphorus sulphide halides of composition $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Hal}$ (with $\mathrm{Hal}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$). These isomorphic compounds can be synthesized in the pure form from the elements and CuHal at $700^{\circ} \mathrm{C}$. Crystals (orange-red, transparent, flattened tetrahedra, up to 10 $\times 10 \times 4 \mathrm{~mm})$ have been grown by vapour transport (Kuhs, Nitsche \& Scheunemann, 1976).

In this paper, the structure of $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ is presented and the possible causes for its high ionic conductivity are discussed. Furthermore, the structural relationships to other compounds with icosahedral anion sublattices (in the following termed 'icosahedral structures') are demonstrated le.g. $\mathrm{Cd}_{4} \mathrm{GeS}_{6}$ (Susa \& Steinfink, 1971), $\mathrm{Cd}_{4} \mathrm{SiS}_{6}$ (Krebs \& Mandt, 1972), $\quad \mathrm{Cd}_{14} \mathrm{P}_{4} \mathrm{~S}_{24}$ (Grieshaber, Nitsche \& Bubenzer, 1976), $\mathrm{Cd}_{13} \mathrm{P}_{4} \mathrm{~S}_{22} \mathrm{I}_{2}$ (Bubenzer, Nitsche \& Grieshaber, 1976), $\mathrm{Ag}_{8} \mathrm{GeTe}_{6}$ (Rysanek, Laruelle \& Katty, 1976), $\mathrm{Ag}_{8} \mathrm{SiS}_{6}$ (Krebs \& Mandt, 1977) and $\mathrm{Cu}_{7} \mathrm{PS}_{6}$ (Kuhs \& Nitsche, 1978)|.

Experimental

Crystal data

Vapour-grown, cubic $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ crystals show $\{111\}$ combined with $\{1 \overline{1} 1\}$ and occasionally $\{100\}$ and $\{110\}$ faces. They are orange and transparent (absorption edge at 564 nm). The formula was confirmed by chemical analysis (FW 652.44). Lattice
parameters $\left(20^{\circ} \mathrm{C}\right)$ are $a=9.728$ (1) $\AA, V=920.6$ (2) $\AA^{3}, Z=4, D_{m}=4.68, D_{c}=4.707 \mathrm{Mg} \mathrm{m}{ }^{-3}$. Reflection conditions: $h k l: h+k, k+l, l+h=2 n$; space group $F \overline{4} 3 \mathrm{~m}$. Mo Ka radiation $(\lambda=0.7109 \AA), \mu($ Mo $K a)=$ $1.988 \mathrm{~m}^{-1}$. Crystal size: tetrahedron of $180 \mu \mathrm{~m}$ edge length. The cell parameter was obtained by a leastsquares refinement of 13 Guinier powder reflections $\mid \lambda\left(\mathrm{Cu} \mathrm{Ka}_{1}\right)=1.54051 \AA ; \mathrm{As}_{2} \mathrm{O}_{3}$ standard $]$.

Data collection

The crystal was mounted with [100] parallel to the axis of the goniometer. Intensities were collected on a computer-controlled four-circle diffractometer (EnrafNonius CAD-4, Mo K_{0} radiation, graphite monochromator) and measured with a scintillation counter. The $\omega-2 \theta$ scan method was used to explore one sixteenth of the sphere of reflection between $2 \theta=7.25$ and 116.85°. Long-time drift of the primary beam was corrected by checking the intensities of two standard reflections after every 20 measurements. A total of 634 reflections (255 of which were independent) were recorded. Of these, 171 had intensities $I \geq 2 \sigma(I)$, where $\sigma(I)$ is the variance of observations. The internal $R=$ $\Sigma\left|I-I_{m}\right| / \Sigma I_{m}$ was $0.043\left(I_{m}=\right.$ mean intensity $)$.

Data reduction

The XRAY 70 system (Stewart, Kundell \& Baldwin, 1970) was used for data reduction, structure solution and refinement. Lorentz-polarization and absorption corrections were applied. The absorption corrections (interpolation method of Gauss) varied between 4.87 and $3 \cdot 22$. Scattering factors for $\mathrm{Cu}, \mathrm{P}, \mathrm{S}$ and Br were taken from International Tables for X-ray' Crystallography (1968).

Structure determination and refinement

Wilson statistics and second-harmonic generation (Nd laser irradiation; $\lambda=1060 \mathrm{~nm}$) indicated noncentrosymmetry and uniquely determined the space group as $F \overline{4} 3 \mathrm{~m}$.

Peaks in the Patterson map suggested occupancy of: the 24 -fold equipoint (g), the 16 -fold equipoint (e) and at least two of the fourfold equipoints $(a),(b),(c)$ or (d). The following initial assignments were made: Cu on $24(g)$ with $x=0 ; 16$ of the 20 S on $16(e)$ with $x=\frac{3}{8}$; the remaining 4 S on $4(c) ; \mathrm{Br}$ on $4(a)$ and P on $4(b)$. An isotropic structure refinement starting from these positions yielded $R=0 \cdot 19$.

Fourier and difference maps clearly showed that the Cu atoms were displaced from $24(g)$ into the four different (closely adjoining) equipoints $48(h) \mid \mathrm{Cu}(1)$, $\mathrm{Cu}(2), \mathrm{Cu}(3), \mathrm{Cu}(6)$, into the equipoint $24(f)$ with $x=$ $\frac{1}{4}\left[\mathrm{Cu}(4) \mid\right.$ and into $16(e)$ with $x=\frac{1}{8}\lfloor\mathrm{Cu}(5)]$. Unrestricted refinement of the Cu atoms yielded population parameters (shown in Table 1) for these equipoints.

Furthermore, the peak heights of the F and ΔF maps indicated that the equipoints $4(a)$ and $4(c)$, although fully occupied, must have mixed populations of Br and S atoms. Also, a fraction of the P atoms assigned to $4(b)$ were residing in $4(d)$, both equipoints thus being only partially occupied.

Therefore, a reasonable distribution of four S and four Br on $4(a)$ and $4(c)$ and a partition of four P on $4(b)$ and $4(d)$ had to be established. After finding approximate atomic coordinates by isotropic refinement, R was calculated as a function of the distribution of S and Br (all parameters unrestricted, except population parameters of Cu). Mean atomic scattering factors, corresponding to different ratios of $\mathrm{S}: \mathrm{Br}$ were used, the total number of Br atoms on the two equipoints always being four. A distinct minimum of R
occurred for $84 \% \mathrm{Br}(16 \% \mathrm{~S})$ on $4(a)$, symbolized by $(\mathrm{Br}-\mathrm{S})$, and $84 \% \mathrm{~S}(16 \% \mathrm{Br})$ on $4(c)$, symbolized by $(\mathrm{S}-\mathrm{Br})$. A subsequent constrained refinement of population parameters for the equipoints $4(b)$ and $4(d)$ indicated that 85% of the four P atoms were residing (in statistical distribution) in $4(b)$ and 15% in $4(d)$. Subsequent unrestricted refinement of the population parameters of the Cu equipoints did not significantly change their values or the position of the minimum in R. A least-squares refinement was then carried out with anisotropic temperature factors for all atoms. Isotropic extinction (Larson, 1967) was introduced as an additional parameter and the f values were corrected for anomalous scattering. The values of Δf^{\prime} and $\Delta f^{\prime \prime}$ were taken from International Tables for X-ray' Crystallography (1974). The function minimized was $\sum w\left(\left|F_{m}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}(F)$. Refinement was stopped when shifts of all parameters were less than one third of the corresponding standard deviation. The final $R=\Sigma\left(\left|F_{m}\right|-\left|F_{c}\right|\right) / \Sigma F_{m}$ was 0.046 .* The ΔF maps now obtained were absolutely flat.

Structural results and discussion

Table 1 gives the atomic coordinates, the percentage occupancy (population parameters) of the various equipoints and the thermal parameters.

The structure is best understood by first considering the anion sublattice formed by S and Br . Sixteen (of the 20) S atoms occupy $16(e)$. The remainder, together with the four Br atoms, are distributed among 4(a) and $4(c)$ and denoted ($\mathrm{Br}-\mathrm{S}$) and ($\mathrm{S}-\mathrm{Br}$) respectively. The

[^0]
Table 1. Fractional coordinates, thermal parameters and occupancies

All values are $\times 10^{4}$. Estimated standard deviations are in parentheses. The Debye $-W$ aller terms are defined as

$$
T=\exp \left(-2 \pi^{2} \sum_{i} \sum_{j}^{3} a_{i}^{*} a_{i}^{*} h_{i} h_{j} U^{i j}\right)
$$

for $\mathrm{Cu}(1)-(5)$ and S , and $T=\operatorname{expl}-2 \pi^{2} U^{11}(2 \sin \theta / \lambda)^{2} \mid$ for $\mathrm{Cu}(6), \mathrm{P}(1),(\mathrm{S}-\mathrm{Br})$ and $(\mathrm{Br}-\mathrm{S}) . W=$ Wyckoff position, $P=\%$ occupancy.

	W	P	x	y	z	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\mathrm{Cu}(1)$	48(h)	24.5 (8)	2355 (7)	2355 (7)	230 (9)	240 (40)	240 (40)	220 (20)	100 (40)	10 (20)	10 (20)
$\mathrm{Cu}(2)$	48(h)	10.5 (2.2)	1940 (20)	1940 (20)	210 (20)	250 (60)	250 (60)	150 (50)	120 (70)	-60 (60)	-60 (60)
$\mathrm{Cu}(3)$	48(h)	$6 \cdot 8(2 \cdot 1)$	1800 (30)	1800 (30)	-130 (40)	440 (120)	440 (120)	390 (190)	-170 (120)	60 (90)	60 (90)
$\mathrm{Cu}(4)$	24(f)	8.4 (1.3)	2590 (70)	0	0	880 (290)	630 (150)	630 (150)	0	0	250 (240
$\mathrm{Cu}(5)$	16(e)	$6 \cdot 5$ (2.1)	1420 (80)	1420 (80)	1420 (80)	930 (370)	930 (370)	930 (370)	490 (420)	490 (420)	490 (420
$\mathrm{Cu}(6)$	48(h)	1.8 (7)	2960 (50)	2960 (50)	4810 (60)	170 (90)					
$\mathrm{P}(1)$	$4(b)$	85.0 (5)	5000	5000	5000	70 (10)					
$\mathrm{P}(2)$	4(d)	$15 \cdot 0$ (5)	7500	7500	7500	710 (340)					
S	16(e)	100	6214 (3)	6214 (3)	6214 (3)	146 (7)	146 (7)	146 (7)	-26(6)	26 (6)	- 26 (6)
$(\mathrm{S}-\mathrm{Br})$	4(c)	100	2500	2500	2500	210 (10)					
$(\mathrm{Br}-\mathrm{S})$	4(a)	100	0	0	0	240 (10)					

anions form a framework of centred, interpenetrating, slightly deformed icosahedra, each anion being surrounded by 12 nearest anion neighbours situated at the vertices of (approximate) icosahedra. In Fig. 1 such a centred anion icosahedron is shown. Its edges, together with the lines connecting the vertices with the centre. form (in the ideal case) 20 trigonal, pseudotetrahedral pyramids. The deformation of each icosahedron is such that two perfect and 18 distorted tetrahedra result (respectively 8 and 128 per unit cell). The two perfect tetrahedra, $T(1)$ and $T(2)$ of Table 2 , differing slightly in size, are formed by S atoms only. Among the distorted tetrahedra, which are formed by S , (S-Br)

Fig. 1. A centred anion icosahedron with its characteristic pentatomic rings (drawn by ORTEP; Johnson, 1965).
and ($\mathrm{Br}-\mathrm{S}$) atoms, four different kinds, $T(3)-T(6)$ of Table 2, can be discerned. Thus there exist six kinds of tetrahedral sites in the anion sublattice: two perfect and four deformed. The spatial connexion of the anion icosahedra is conveniently described by a general scheme for coding layered, tetrahedrally close-packed structures (Pearson \& Shoemaker, 1969; Shoemaker

Fig. 2. Projection of the idealized anion sublattice of $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ along |100| with an anion icosahedron outlined. The numbers are heights in eighths of the unit cell. Single circles correspond to the Cu atoms, and double circles to the Mg atoms of the Laves phase MgCu_{2}.

Table 2. Distances and angles in the different anion tetrahedra

	Number per unit cell	Volume (\AA	Distances (\AA)		Angles (${ }^{\circ}$)		Examples
$T(1)$	4	4.39	S-S	$3 \cdot 340$ (4)	S-S-S	60.00 (9)	S. $S^{\text {in }}, S^{\text {i }}$, $S^{\text {vii }}$
$T(2)$	4	$5 \cdot 22$	S-S	$3 \cdot 538$ (4)	S-S-S	$60 \cdot 00$ (8)	S, $S^{\text {iliii, }}$ S ${ }^{\text {i }}$, S^{\prime}
$T(3)$	16	$5 \cdot 69$	(S-Br)-S	4.023 (3)	$(\mathrm{S}-\mathrm{Br})-\mathrm{S}-\mathrm{S}$	65.47 (7)	(S-Br), $\mathrm{S}^{\mathrm{ii}}, \mathrm{S}^{\text {iii] }}$, ${ }^{\text {vi }}$
			$\mathrm{S}-\mathrm{S}$	$3 \cdot 340$ (4)	$\mathrm{S}-(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	49.06 (6)	
					S-S-S	60.00 (9)	
$T(4)$	16	6.31	$(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	$4 \cdot 044$ (3)	($\mathrm{Br}-\mathrm{S}$) $-\mathrm{S}-\mathrm{S}$	63.91 (7)	($\mathrm{Br}-\mathrm{S}$) $, \mathrm{S}^{\mathrm{iii}}, \mathrm{S}^{\mathrm{i}}, \mathrm{S}^{\text {xii }}$
			S-S	3.538 (4)	$\mathrm{S}-(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	51.89 (6)	
					$S-S-S$	$60 \cdot 00$ (8)	
$T(5)$	48	7.33	$(\mathrm{Br}-\mathrm{S})-(\mathrm{S}-\mathrm{Br})$	4.212	$(\mathrm{Br}-\mathrm{S})-(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	58.77 (4)	$(\mathrm{Br}-\mathrm{S}),(\mathrm{S}-\mathrm{Br}), \mathrm{S}^{\mathrm{i}}, \mathrm{S}^{\mathrm{ij}}$
			$(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	4.044 (3)	$(\mathrm{S}-\mathrm{Br})-(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	58.28 (4)	
			$(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	4.023 (3)	$(\mathrm{Br}-\mathrm{S})-\mathrm{S}-(\mathrm{S}-\mathrm{Br})$	62.96 (4)	
			S-S	$3 \cdot 340$ (4)	$(\mathrm{Br}-\mathrm{S})-\mathrm{S}-\mathrm{S}$	65.61 (6)	
					$(\mathrm{S}-\mathrm{Br})-\mathrm{S}-\mathrm{S}$	65.47 (6)	
					$\mathrm{S}-(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	51.89 (6)	
					$\mathrm{S}-(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	52.18(6)	
$T(6)$	48	7.05	$(\mathrm{Br}-\mathrm{S})-(\mathrm{S}-\mathrm{Br})$	4.212	$(\mathrm{Br}-\mathrm{S})-(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	58.77 (4)	($\mathrm{Br}-\mathrm{S}$), (S-Br), $\mathrm{S}^{\mathrm{ii}}, \mathrm{S}^{\mathrm{iii}}$
			($\mathrm{Br}-\mathrm{S}$)--S	$4 \cdot 044$ (3)	$(\mathrm{S}-\mathrm{Br})-(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	58.28 (4)	
			$(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	4.023 (3)	$(\mathrm{Br}-\mathrm{S})-\mathrm{S}-(\mathrm{S}-\mathrm{Br})$	62.96 (4)	
			$\mathrm{S}-\mathrm{S}$	$3 \cdot 538$ (4)	$(\mathrm{Br}-\mathrm{S})-\mathrm{S}-\mathrm{S}$	64.06 (6)	
					(S-Br)-S-S	63.91 (6)	
					$\mathrm{S}-(\mathrm{Br}-\mathrm{S})-\mathrm{S}$	48.79 (6)	
					$\mathrm{S}-(\mathrm{S}-\mathrm{Br})-\mathrm{S}$	49.06 (6)	

\& Shoemaker, 1972). In this scheme, the (simplified) code for the icosahedral anion sublattice is $P(0 ; L)$ (Bubenzer, Nitsche \& Grieshaber, 1976). It is interesting to note that the same code also applies to the Laves phase MgCu_{2}. In fact, as shown in Fig. 2, the idealized anion sublattice of $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ (and of many other icosahedral structures) is identical with the MgCu_{2} lattice. The 16 S atoms in $16(e)$ correspond to the Cu atoms, and the 'atoms' ($\mathrm{S}-\mathrm{Br}$) and ($\mathrm{Br}-\mathrm{S}$) in $4(c)$ and $4(a)$ respectively correspond to the Mg atoms in MgCu_{2}.

Optimal packing in such an icosahedral arrangement requires two constituents in the proportion $A: B=1: 2$ having a radius ratio of $r_{A}: r_{B}=\sqrt{ } 3: \sqrt{ } 2=1 \cdot 225$. For MgCu_{2} this ratio is $1 \cdot 250$. For $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ it is only 1.065 and in addition there is a deficiency in the larger constituent (Br) which has to be compensated by filling the gaps in its sites by atoms of the smaller constituent (S). This causes high temperature factors for the ($\mathrm{S}-\mathrm{Br}$) and ($\mathrm{Br}-\mathrm{S}$) 'atoms' in the structure.

All equipoints of the cation sublattice, on the other hand, are only partially occupied.

The P atoms reside in the smallest (the perfect) tetrahedral sites of the anion sublattice: $\mathrm{P}(1)$ in $T(1)$ with 85% occupancy and $\mathrm{P}(2)$ in $T(2)$ with 15% occupancy (see Table 2). The 24 Cu atoms are distributed among six partially (and statistically) occupied equipoints which correspond to various locations within the distorted anion tetrahedra. A total of 87% of the Cu atoms $[\mathrm{Cu}(1), \mathrm{Cu}(2), \mathrm{Cu}(3)$ and $\mathrm{Cu}(6)]$ reside in four different 48 -fold equipoints with widely differing occupancies. The remaining $13 \%[\mathrm{Cu}(4), \mathrm{Cu}(5)]$ reside in $24(f)$ and $16(e)$. The total number of Cu atoms on independently refined positions is 24.0 ± 1.6 per cell, confirming the chemical analysis.
$\mathrm{Cu}(1)$ is situated close to the centre of one face of the (distorted) anion tetrahedron $T(6)$. Its coordination is, therefore, nearly triangular. $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ are situated near the centre of $T(6)$ and thus are coordinated approximately tetrahedrally. Table 3 gives the bond lengths and angles of the Cu and P environments. Fig. 3 shows the environments, typical distances and thermal ellipsoids of $\mathrm{Cu}(1)-\mathrm{Cu}(3) . \mathrm{Cu}(4)$, lying on a face of $T(5)$, is also coordinated triangularly. $\mathrm{Cu}(5)$ is situated on an $(\mathrm{S}-\mathrm{Br})-(\mathrm{Br}-\mathrm{S})$ edge of $T(6)$ and, therefore, is exactly linearly coordinated by two anions. $\mathrm{Cu}(6)$ is nearly linearly coordinated by two S atoms. The short $\mathrm{Cu}(6)-\mathrm{S}$ distance of $1.77 \AA$ is notable. The reason for the presence of Cu atoms in the weakly populated position $\mathrm{Cu}(6)$ is probably the partial occupancy of the P equipoints $4(b), 15 \%$ of which are empty. Therefore, a fraction of the $\mathrm{Cu}(1)-\mathrm{Cu}(3)$ atoms shift into position $\mathrm{Cu}(6)$ towards the empty P equipoints $4(b)$.

At this point it should be mentioned that $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ exhibits a high conductivity caused by migration of Cu ions. At $30^{\circ} \mathrm{C}$ the ionic conductivity is $1.5 \times 10^{-7} \Omega^{1}$ m^{1}, at $250^{\circ} \mathrm{C}$ it reaches $3.4 \times 10^{5} \Omega^{-1} \mathrm{~m}^{1}$. Its thermal activation energy is 0.35 eV . An insight into the possible conductivity mechanisms can be obtained by considering the positions of the Cu atoms and the directions of their thermal ellipsoids.
$\mathrm{Cu}(1)-\mathrm{Cu}(3)$ are located within (distorted) tetrahedra of the type $T(6)$ (see Fig. 3). The relative close vicinity of these positions makes it appear probable that jumps of Cu ions between them are easily thermally activated. An explanation of the migration of Cu ions into adjacent anion tetrahedra is offered by the fact that the longest axes of the (highly anisotropic) thermal ellipsoids of $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ are directed towards

Fig. 3. Environments and anisotropic thermal ellipsoids of $\mathrm{Cu}(1)-\mathrm{Cu}(3)$ (drawn by $O R T E P$: Johnson, 1965). (Note: distances are in pm.)
$\mathrm{Cu}(5)$ and $\mathrm{Cu}(4)$ respectively. The latter atoms lie on ($\mathrm{S}-\mathrm{Br}$)-($\mathrm{Br}-\mathrm{S}$) edges and on $\mathrm{S}-\mathrm{S}-(\mathrm{Br}-\mathrm{S})$ faces, respectively, of $T(5), T(6)$ tetrahedra. The positions $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ can thus be considered as starting points for thermally activated jumps of Cu ions into the positions $\mathrm{Cu}(5)$ and $\mathrm{Cu}(4)$ respectively, from where, by analogous processes, they can reach $\mathrm{Cu}(2)$ or $\mathrm{Cu}(3)$ positions in neighbouring tetrahedra etc. Fig. 4 is a perspective drawing of $T(5)$ and $T(6)$ anion tetrahedra from a section of the lattice, showing these two

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the Cu and P environments

Standard deviations are in parentheses.

$\mathrm{Cu}(1)-(\mathrm{S}-\mathrm{Br})$	$2 \cdot 218$ (9)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(1)-\mathrm{S}^{\text {i }}$	127.5 (4)
$\mathrm{Cu}(1)-\mathrm{S}^{\text {i }}$	$2 \cdot 268$ (8)	(S-Br)-Cu(1)-S ${ }^{\text {i }}$	127.5 (4)
$\mathrm{Cu}(1)-\mathrm{Si}^{\text {i }}$	$2 \cdot 268$ (8)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(1)-(\mathrm{Br}-\mathrm{S})$	99.1 (3)
$\mathrm{Cu}(1)-(\mathrm{Br}-\mathrm{S})$	$3 \cdot 248$ (7)	$\mathrm{S}^{\mathbf{i}}-\mathrm{Cu}(1)-\mathrm{S}^{\text {i }}$	$102 \cdot 6$ (4)
		$\mathrm{S}^{\mathrm{i}}-\mathrm{Cu}(1)-(\mathrm{Br}-\mathrm{S})$	92.6 (2)
		$\mathrm{S}^{\mathrm{i}}-\mathrm{Cu}(1)-(\mathrm{Br}-\mathrm{S})$	92.6 (2)
$\mathrm{Cu}(2)-(\mathrm{S}-\mathrm{Br})$	$2 \cdot 35$ (2)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(2)-\mathrm{S}^{\text {i }}$	116.5 (8)
$\mathrm{Cu}(2)-\mathrm{S}^{\text {i }}$	$2 \cdot 38$ (2)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(2)-\mathrm{S}^{\text {i }}$	$116 \cdot 5$ (8)
$\mathrm{Cu}(2)-\mathrm{Si}^{\text {i }}$	$2 \cdot 38$ (2)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(2)-(\mathrm{Br}-\mathrm{S})$	113.6 (8)
$\mathrm{Cu}(2)-(\mathrm{Br}-\mathrm{S})$	$2 \cdot 68$ (2)	$\mathrm{S}^{\text {i }}$ - $\mathrm{Cu}(2)-\mathrm{S}^{\text {i }}$	96.2 (7)
		$\mathrm{Si}^{\mathbf{i}} \mathrm{Cu}(2)-(\mathrm{Br}-\mathrm{S})$	$106 \cdot 2$ (7)
		$\mathrm{S}^{\mathrm{ii}}-\mathrm{Cu}(2)-(\mathrm{Br}-\mathrm{S})$	$106 \cdot 2$ (7)
$\mathrm{Cu}(3)-\mathrm{S}^{\text {i }}$	$2 \cdot 27$ (3)	$\mathrm{S}^{\mathbf{i}}-\mathrm{Cu}(3)-\mathrm{S}^{\text {i }}$	102 (1)
$\mathrm{Cu}(3)-\mathrm{Si}^{\text {ii }}$	$2 \cdot 27$ (3)	$\mathrm{S}^{\mathbf{i}}-\mathrm{Cu}(3)-(\mathrm{Br}-\mathrm{S})$	117 (1)
$\mathrm{Cu}(3)-(\mathrm{Br}-\mathrm{S})$	2.48 (3)	$\mathrm{Si}-\mathrm{Cu}(3)-(\mathrm{S}-\mathrm{Br})$	106 (1)
$\mathrm{Cu}(3)-(\mathrm{S}-\mathrm{Br})$	2.74 (4)	$\mathrm{S}^{\text {ii }}-\mathrm{Cu}(3)-(\mathrm{Br}-\mathrm{S})$	117 (1)
		$\mathrm{Si}^{\mathrm{ii}}-\mathrm{Cu}(3)-(\mathrm{S}-\mathrm{Br})$	106 (1)
		$(\mathrm{Br}-\mathrm{S})-\mathrm{Cu}(3)-(\mathrm{S}-\mathrm{Br})$	108 (1)
$\mathrm{Cu}(4)-\mathrm{S}^{\text {ii }}$	2.04 (4)	$\mathrm{Si}^{\mathrm{ii}}-\mathrm{Cu}(4)-\mathrm{S}^{\text {iii }}$	110 (3)
$\mathrm{Cu}(4)-\mathrm{S}^{\text {iii }}$	2.04 (4)	$\mathrm{S}^{\mathrm{ii}}-\mathrm{Cu}(4)-(\mathrm{Br}-\mathrm{S})$	125 (2)
$\mathrm{Cu}(4)-(\mathrm{Br}-\mathrm{S})$	2.52 (7)	$\mathrm{S}^{\text {iii }}-\mathrm{Cu}(4)-(\mathrm{Br}-\mathrm{S})$	125 (2)
$\mathrm{Cu}(5)-(\mathrm{S}-\mathrm{Br})$	1.83 (8)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(5)-(\mathrm{Br}-\mathrm{S})$	180
$\mathrm{Cu}(5)-(\mathrm{Br}-\mathrm{S})$	$2 \cdot 38$ (8)		
$\mathrm{Cu}(6)-\mathrm{S}^{\text {i }}$	1.77 (6)	$\mathrm{S}^{\text {i }}-\mathrm{Cu}(6)-(\mathrm{S}-\mathrm{Br})$	156 (3)
$\mathrm{Cu}(6)-(\mathrm{S}-\mathrm{Br})$	2.34 (6)	S^{i} - $\mathrm{Cu}(6)-\mathrm{S}^{\text {' }}$	100 (3)
$\mathrm{Cu}(6)-\mathrm{S}^{\text {- }}$	2.77 (5)	$(\mathrm{S}-\mathrm{Br})-\mathrm{Cu}(6)-\mathrm{S}^{*}$	104 (2)
$\mathrm{P}(1)-\mathrm{S}$	2.045 (3)	S-P(1)-S ${ }^{\text {i }}$	109.5 (1)
$\mathrm{P}(1)-S^{\text {i }}$	2.045 (3)	$S-P(1)-S^{\text {vii }}$	109.5 (1)
$\mathrm{P}(1)-\mathrm{S}^{\text {ii }}$	2.045 (3)	$S-P(1)-S^{\text {i }}$	109.5 (1)
$\mathrm{P}(1)-\mathrm{S}^{\text {i }}$	2.045 (3)	$S^{\text {bi }}-\mathrm{P}(1)-\mathrm{S}^{\text {di }}$	109.5 (1)
		$\mathrm{S}^{\text {vi }}-\mathrm{P}(1)-\mathrm{S}^{\text {i }}$	109.5 (1)
		$S^{\text {vii }}-\mathrm{P}(1)-\mathrm{S}^{\text {i }}$	109.5 (1)
$\mathrm{P}(2)$-S	$2 \cdot 167$ (3)	S-P(2)-S*	109.5 (1)
$\mathrm{P}(2)-\mathrm{S}^{\text {® }}$	$2 \cdot 167$ (3)	S-P(2)-S ${ }^{\text {viii }}$	109.5 (1)
$\mathrm{P}(2)-\mathrm{S}^{\text {viii }}$	$2 \cdot 167$ (3)	$S-P(2)-S^{\text {i }}$	109.5 (1)
$\mathrm{P}(2)-\mathrm{S}^{\text {ix }}$	2.167 (3)	$S^{*}-\mathrm{P}(2) \mathrm{S}^{\text {iiii }}$	109.5 (1)
		$\mathrm{S}^{\times}-\mathrm{P}(2)-\mathrm{S}^{\text {i }}$	109.5 (1)
		$S^{\text {iiii- }}$ P(2)-S ${ }^{\text {iv }}$	109.5 (1)

Superscripts refer to the following transformations

None	x,	y,	z	(viii)	$-x+\frac{3}{2}$,	$-y+\frac{3}{2}$,	z
(i)	$x-\frac{1}{2}$,	$-y+1$,	$-z+\frac{1}{2}$	(ix)	$-x+\frac{3}{2}$,	y,	$-z+\frac{3}{2}$
(ii)	$-x+1, y+\frac{1}{2}$	$z+\frac{1}{2}$	(x)	x,	$-y+\frac{3}{2}$,	$-z+\frac{3}{2}$	
(iii)	$-x+1$,	$-y+\frac{1}{2}$,	$z-\frac{1}{2}$	(xi)	x,	$y-\frac{1}{2}$,	$z-\frac{1}{2}$
(iv)	$-x+1$,	$-y+1$,	z	(xii)	$x-1$,	$y-\frac{1}{2}$,	$z-\frac{1}{2}$
(v)	$x-\frac{1}{2}$,	$y-\frac{1}{2}$	z	(xii)	$-x+\frac{1}{2}$,	$y-\frac{1}{2}$,	$-z+1$
(vi)	x,	$-y+1$,	$-z+1$	(xiv)	$-x+\frac{1}{2}$,	$-y+1$,	$z-\frac{1}{2}$
(vii)	$-x+1$,	y,	$-z+1$				

plausible jumping processes for the Cu ions. The $\mathrm{Cu}(2)-\mathrm{Cu}(5)-\mathrm{Cu}(2)$ process (jump distance $1.37 \AA$) takes place via the common edge of two $T(6)$ tetrahedra (see Table 2). In the $\mathrm{Cu}(3)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$ process (jump distance $1.90 \AA$) a $\mathrm{Cu}(3)$ from $T(6)$ traverses one $T(5)$, reaches the position $\mathrm{Cu}(4)$ on the common face of two $T(5)$ tetrahedra, traverses the second $T(5)$ and finally lands in position $\mathrm{Cu}(3)$ of another $T(6)$. The plausibility of these processes is further substantiated by the fact that $\mathrm{Cu}(4)$ and $\mathrm{Cu}(5)$ have very high anisotropic temperature factors and low site occupancies, indicating a short duration of stay of Cu ions on these sites during their migration. The low temperature factor of $\mathrm{Cu}(6)$ indicates that atoms on equipoints $48(h)$, which are weakly populated anyway, do not participate appreciably in the jumping process.
Fig. 5 is an electron density map of the cell at $x=0$, indicating the pathways of the process $\mathrm{Cu}(3)-\mathrm{Cu}(4)-$ $\mathrm{Cu}(3)$.

The partial occupancy of the P equipoints $4(b)$ and $4(d)$ is also of consequence to ionic conduction. Suppose all four P atoms (fully) occupy $4(b)$ as $\mathrm{P}(1)$ (see Fig. 5). Then, because of the high positive charge of P^{5+}, the $\mathrm{Cu}(4)$ sites, important stations for the $\mathrm{Cu}(3)-\mathrm{Cu}(4)-\mathrm{Cu}(3)$ jumping process, would not be occupied [distance $\mathrm{P}(1)-\mathrm{Cu}(4) 2 \cdot 35 \AA$). Jumping of $\mathrm{Cu}(3)$ from one tetrahedron to another via position

Fig. 4. Pathways of Cu ions for the jumping processes $\mathrm{Cu}(3)-$ $\mathrm{Cu}(4)-\mathrm{Cu}(3)$ and $\mathrm{Cu}(2)-\mathrm{Cu}(5)-\mathrm{Cu}(2)$ in a section of the lattice. The sequence shown has been arbitrarily chosen from many possible ones (drawn by ORTEP: Johnson. 1965).

Fig. 5. Electron density map of the unit cell at $x=0$ (not scaled). Heavily dotted lines indicate probable pathways of Cu . ions for $\mathrm{Cu}(3)$ $\mathrm{Cu}(4)-\mathrm{Cu}(3)$ processes. Hatched areas have negative densities of less than 1 e $\dot{A}{ }^{2}$.
$\mathrm{Cu}(4)$, therefore, is only probable if the P positions adjoining $\mathrm{Cu}(4)$ are not occupied.

The high temperature factors of ($\mathrm{Br}-\mathrm{S}$) and ($\mathrm{S}-\mathrm{Br}$), mentioned above, make it highly probable that the Cu jumping processes are, in addition, facilitated by coupled oscillations of these atoms. Their disordered distribution makes the lattice 'softer' than for icosahedral packing containing the two constituents (as in MgCu_{2}) in the proper quantities ($1: 2$) and radius ratios.

Icosahedral anion sublattices appear to exist in many chalcogenides and chalcogenide halides. The first representatives found were the isomorphic compounds $\mathrm{Cd}_{4} \mathrm{GeS}_{6}$ (Susa \& Steinfink, 1971) and $\mathrm{Cd}_{4} \mathrm{SiS}_{6}$ (Krebs \& Mandt, 1972) which are monoclinic, space group Cc, $Z=4$. The S tetrahedra containing the small atoms Si or Ge (corresponding to P in $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$) are highly regular, while those containing Cd (corresponding to Cu in $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$) are quite distorted. Low-temperature X-ray photographs (Kuhs, Nitsche \& Scheunemann, 1976) indicate that $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ transforms at about $-95^{\circ} \mathrm{C}$ into a monoclinic modification which, because of the similarity of the powder patterns, seems to be isotypic with $\mathrm{Cd}_{4} \mathrm{SiS}_{6}$ and $\mathrm{Cd}_{4} \mathrm{GeS}_{6}$. The P analogue of the latter two compounds has also been prepared. Its unit-cell content is $\mathrm{Cd}_{14} \mathrm{P}_{4} \mathrm{~S}_{24}$ (Grieshaber, Nitsche \& Bubenzer, 1976) and it is also monoclinic, $C c$, at room temperature. This compound constitutes an end member of the mixed-crystal series $\mathrm{Cd}_{14-x} \mathrm{P}_{4} \mathrm{~S}_{24-2 x} \mathrm{I}_{2 x}$ with 0 $\leq x \leq 1$. The other end member is $\mathrm{Cd}_{13} \mathrm{P}_{4} \mathrm{~S}_{7} \mathrm{I}_{2}$. By a
special growth technique, the cubic $(F \overline{4} 3 m)$ hightemperature phase of the latter compound can be stabilized at room temperature. It is interesting to compare its structure (Bubenzer, Nitsche \& Grieshaber, 1976) with that of $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$. Whereas the anion sublattices are very similar, the most important difference is that in $\mathrm{Cd}_{13} \mathrm{P}_{4} \mathrm{~S}_{22} \mathrm{I}_{2}$ all four P atoms occupy one equipoint $[4(b)]$. In $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ they partially populate two equipoints $\mid 4(b)$ and $4(d) \mid$ in a statistical manner. In $\mathrm{Cd}_{13} \mathrm{P}_{4} \mathrm{~S}_{22} \mathrm{I}_{2}$ the Cd atoms are distributed among the distorted anion tetrahedra in such a way that only corner-sharing, Cd-containing tetrahedra result. (The $\mathrm{Cd}-\mathrm{Cd}$ distances between atoms residing in edge-sharing tetrahedra would be shorter than the interatomic distance in Cd metal of 2.98 A.) In $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$, on the other hand, the Cu atoms are distributed such that edge-sharing, occupied tetrahedra also occur. The distance between adjacent $\mathrm{Cu}(3)$ atoms in edge-sharing anion tetrahedra is $2.65 \AA$, which is longer than the shortest $\mathrm{Cu}-\mathrm{Cu}$ distances in comparable compounds $\left(\mathrm{Cu}_{2} \mathrm{~S} 2.53 \AA, \mathrm{CuBi}_{5} \mathrm{~S}_{8}\right.$ and Cu metal $2.56 \AA$; Ohmasa \& Mariolacos, 1974). Simultaneous occupation of face-sharing anion tetrahedra is impossible in both $\mathrm{Cd}_{13} \mathrm{P}_{4} \mathrm{~S}_{22} \mathrm{I}_{2}$ and $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$, where the $\mathrm{Cu}(3)-\mathrm{Cu}(3)$ distance would be $1.93 \AA$.

Other icosahedral compounds described recently are: $\mathrm{Ag}_{8} \mathrm{SiS}_{6}$ (Pna2, $Z=4$; Krebs \& Mandt, 1977), $\mathrm{Ag}_{8} \mathrm{GeTe}_{6}(F \overline{4} 3 m, Z=4$; Rysanek, Laruelle \& Katty, 1976) and $\mathrm{Ag}_{9} \mathrm{GaS}_{6}$ (orthorhombic I lattice, $Z=4$;

Brandt \& Krämer, 1976). We shall soon report on new compounds of the types $A_{5} M^{12} \mathrm{Ch}_{5} \mathrm{Hal}$ and $A_{6} M^{v} \mathrm{Ch}_{5} \mathrm{Hal}\left(A=\mathrm{Cu}, \mathrm{Ag} ; M^{\mathrm{vv}}=\mathrm{Si}, \mathrm{Ge} ; \dot{M}^{\mathrm{v}}=\mathrm{P}, \mathrm{As}\right.$; $\mathrm{Ch}=\mathrm{S}, \mathrm{Se}, \mathrm{Te} ; \mathrm{Hal}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ with $Z=4$ and on the mixed-crystal series $\mathrm{Cu}_{6-3 x} \mathrm{In}_{6+\times} \mathrm{P}_{4} \mathrm{~S}_{20} \mathrm{Hal}_{4}$ with $Z=1$. In all these materials the (small) $\mathrm{Ga}, \mathrm{Si}, \mathrm{Ge}, \mathrm{P}$ or As atoms, preferring highly regular coordination, are located in the ideal tetrahedra of the icosahedral anion sublattice consisting of S, Se or Te , partly with Cl, Br or I . The atoms $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Cd}(\mathrm{Hg})$, which may occur in various (less regular) coordinations, are located in the distorted tetrahedra or are coordinated by only three (two) anions in a triangular (linear) fashion. Icosahedral compounds can crystallize in various typical lattices, between which phase transitions occur, and which derive (by various ordering processes) from a common high-temperature phase of space group $F \overline{4} 3 \mathrm{~m}$.

In ternary sulphides, selenides and tellurides, icosahedral anion coordination seems to be favoured over cubo-octahedral anion coordination (as in cubic close packing and hexagonal close packing) if (1) one of the two cations present (e.g. $\mathrm{Si}^{4+}, \mathrm{Ge}^{4+}, \mathrm{P}^{5+}, \mathrm{As}^{5+}$) has a strong preference for exact tetrahedral coordination, whereas the other (e.g. $\mathrm{Cu}^{+}, \mathrm{Ag}^{+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}$) settles for less symmetric (distorted tetrahedral, trigonal-planar or linear) coordination (2) the chalcogenide sublattice is partially substituted by halogen. The resulting mixed-anion sublattice, although, as discussed above for MgCu_{2}, far from fulfilling the geometric conditions for ideal icosahedral packing, nevertheless favours its formation.

Icosahedral compounds thus constitute a widespread class of materials, allowing a large variety of chemical substitution and corresponding changes in physical properties. Their noncentrosymmetric structures make them attractive candidates for studying piezoelectric, pyroelectric and electro-optic effects (Grieshaber, Nitsche \& Bubenzer, 1976). Those containing Cu and Ag anions are potential superionic conductors.

The authors thank Dr W. Littke for the intensity measurements and $\operatorname{Dr} \mathrm{U}$. van Alpen for an introduction
to ionic-conductivity measurements during two periods at Max-Planck-Institut für Festkörperforschung in Stuttgart, Federal Republic of Germany.

All calculations were carried out on the Univac 1106-II computer of the Rechenzentrum der Universität Freiburg. Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Brandt, G. \& Krämer. V. (1976). Mater. Res. Bull. 11. 1381-1388.
Bubenzer, A., Nitsche, R. \& Grieshaber, E. (1976). Acta Cryst. B32, 2825-2829.
Grieshaber, E., Nitsche, R. \& Bubenzer. A. (1976). Mater. Res. Bull. 11, 1169-1177.
International Tables for X-ray Crystallography (1968). Vol. III. 2nd ed. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson. C. K. (1965). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory. Tennessee.
Krebs. B. \& Mandt, J. (1972). Z. Anorg. Allg. Chem. 338. 193-206.
Krebs. B. \& Mandt, J. (1977). Z. Naturforsch. Teil B. 32. 24-30.
Kuhs, W. F. \& Nitsche, R. (1978). Acta Cryst. To be published.
Kuhs, W. F., Nitsche, R. \& Scheunemann. K. (1976). Mater. Res. Bull. 11, 1115-1124.
Kuhs, W. F., Schulte-Kellinghaus. M., Krämer. V. \& Nitsche, R. (1977). Z. Nalurforsch. Teil B, 32, 1100-1101.
Larson, A. C. (1967). Acta Cry'st. A26, 71-83.
Ohmasa, M. \& Mariolacos, K. (1974). Acta Cryst. B30, 2640-2643.
Pearson, W. B. \& Shoemaker, C. B. (1969). Acta Cryst. B25, 1178-1183.
Rysanek, N., Laruelle, P. \& Katty, A. (1976). Acta Cryst. B 32, 692-696.
Shoemaker, C. B. \& Shoemaker, D. P. (1972). Acta Cryst. B28, 2957-2965.
Stewart, J. M., Kundell, F. A. \& Baldwin. J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Susa, K. \& Steinfink, H. (1971). Inorg. Chem. 10. $1754-$ 1756.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32979 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 13 White Friars. Chester CHI INZ, England.

